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Abstract. This paper is devoted to robust control design for block multilinked nonlinear dynamical 

systems. Transformation of the block system to the single block system is proposed. For the 

considered block systems function of Lyapunov is designed. It is proved if the number of controls is 

equal to or more than the number of state variables of the block, then in the given area the closed-

loop system conditions of stability followed controllability conditions. Control design accounts 

limitations of controls and state variables. Modeling results for nonlinear objects control systems 

are presented. 

Introduction 

Modern control design methods are based on the canonical forms of mathematical models. For 

the linear systems Controllable-Canonical Form is well known [1]. But there is no conventional 

canonical form for the nonlinear systems. Therefore for the nonlinear systems different canonical 

forms are applied. There are controllable Jordan form [2], normal canonical form [3], block form [4, 

5], cascade form [6]. In this paper robust control design problem on base of controllable Jordan 

form is considered. To solve the problem position and path control method is applied [4, 7]. 

Control For The Single Block Object 

First, confirm that you have the correct template for your paper size. This template has been 

tailored for output on the A4 paper size. If you are using US letter-sized paper, please close this file 

and download the file “MSW_USltr_format”. 

Assume the mathematical model of controlled object is 

( )x f x Bu= +�  (1) 

Herein x is state variables vector n×1, u is control vector m×1, ( ) ( )( )
T

if x f x= , 1,i n= , is 

functional vector, ( )i
f x  are function satisfied the existence and uniqueness conditions, ( )i

B b= , 

1,i n= , is matrix n×m, 
i

b  are row vectors. 

Assume that controls are limited: 
max

j ju u≤ , 1,j m=                     (2) 

Herein max

j
u  are positive constants. 

It is necessary find control vector ( )1 2

T

m
u u u u= …  as function of system (1) state variables 

with limitations (2). The control vector must transit object (1) from an arbitrary initial state 
0

0x ≠  to 

a given final state 0
k

x = . Stability of the closed-loop system must be ensured. 

Let us consider a single block object. 

Now we introduce the following definition 1. 

Definition 1. Object (1) consists of a single block if inequalities (3) are satisfied. 

0
i

b ≠ , 1,i n=  (3) 

Control design is based on the following theorem 1. 
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Theorem 1. For object (1) – (3) robust control is 

( )( )max
tanh

T
u U QB x x= −  (4) 

Herein ( )max max max max

1 2, , mU diag u u u=  is a diagonal matrix, tanh  is hyperbolic tangent function, 

( )1 2
, ,...,

m
Q diag q q q=  is a diagonal matrix of the control parameters. 

If condition (5) and (6) are satisfied 

( ) ( )max,
i i

b u f x> , 1,i n=  (5) 

max TBU QB α> , ( ) ( ),f x xα< , 1,i n=  (6) 

then control system (1) – (4) is asymptotically stable. 

Herein operation ( )f x  is absolute value of every element of ( )f x , and ( )max max max max

1 2, , mu u u u=  is a 

vector . 

Lyapunov function of the system (1) – (4) is 

0.5 TV x x=  (7) 

Proof of Theorem 1. From differentiating (7) we obtain 

( ) ( )( )max tanhT T TV x x x f x BU QB x= = −� �  (8) 

Consider areas noted by 1 and 2 and shown on Fig. 1. 

 
Fig.1 – To proof the systen stabilty 

In area 2 we have 

( )tanh
T T

QB x QB x≈  (9) 

From (8) and (9) we obtain 

( )( )

( )

( )

max

max

max

T T

T T

T T

V x f x BU QB x

x x BU QB x

x BU QB x

α

α

= − >

> − =

= −

�

 (10) 

If inequalities (6) are satisfied, then derivative (10) is negative. 

In area 1 we have 

( ) ( )tanh
T TQB x sign QB x≈  (11) 

From (10) and (7) we obtain 

( ) ( )( )maxT TV x f x BU sign QB x= −�  (12) 

If inequalities (5) are satisfied, then derivative (12) is negative. 

The proof is complete. If gain matrix Q ensures stability margin shown on Fig. 1, then the proof 

is strict. 

From theorem 1 it follows that control (4) ensures stability of the closed-loop system (1) – (4) if 

(5), (6) are satisfied. Inequalities (5) are controllability conditions of Pyatnickiy [9]. Inequalities (6) 

are sector limits for functional vector ( )f x . The first inequality (6) is expression for matrix Q  

calculation. 

If the number of controls is above or equal to the number of state variables, then the next 

Theorem 2 is true. 
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Theorem 2. If for object (2) the number of controls is above or equal to the number of state 

variables 

m n≥ ,    (13) 

and inequalities (5) are satisfied, then object (1) is controllable. 

From (5) we obtain 

( ) ( )max,
i i i

b u c f x= > , 1,i n=  (14) 

Herein 
i

c  are positive numbers. 

From (14) we have  
maxBu c=         (15) 

Herein ( )1 2
...

n
c c c c=  is a vector of positive constant. 

From (15) we obtain 
maxBu c= �  (16) 

Herein the signs of vector c�  elements can be different from the signs of vector c  elements. 

System (16) has a nontrivial solution if condition (17) is satisfied: 

( )rang B n=  (17) 

If (19) is satisfied, then Kalman controllability criteria is performed. 

Control For The Block Object 

If object (1) consists of few blocks, then the object is described by Definition 2. 

Definition 2. If object (1) consists of k blocks, then the object mathematical model is 

( ) ( )1 1
,..., ,

i i i k kx f x x x f x Bu+= = +� � , (18) 

Herein 1, 1i k= − , ( )1 2

T
i i i i

lx x x x= …  are vectors 1l × , ( )1 2
, , ...,

T
k

x x x x= , 

( ) ( ) ( )( )1 1 ,...,
T

k kf x f x f x= , ( ) ( ) ( )( )1 1 1 1 1 1

1
,..., ,..., ... ,...,

T
i i i i i i

l
f x x f x x f x x+ + += , 

( )1 1

1

,...,
0

i i

i

i

f x x

x
ε

+

+

∂
> ≠

∂
, 

( )ijB b=  is matrix l m× , k is number of blocks, n l k= × . 

In this paper sizes of object (18) blocks are same. In general case sizes of object (18) blocks can 

be different. 

Block object (18) is controllable Jordan form system [2]. If the number of block is more than two 

2k ≥ , then control vector u actuates immediately at vector kx . Vector kx  actuates at vector 1kx − . 

Therefore vector kx  is fictive control for vector 1kx − . 

Let us introduce the following transformation: 
k kxψ = , i i i kh xψ ψ= + , 1, 1i k= − , (19) 

Herein ih  are weight coefficients. Transformation (19) allows to introduce the Theorem 3. 

Theorem 3. If limitations (2) are satisfied for system (18), then robust control is 

max

1

tanh

k

T i

i

u U QB ψ

=

 
 = −
 
 
∑ , (20) 

If conditions (21) are satisfied 

( )max

1

, , 1,

k

i i k

j

i j

kb u h f f j n

=

 
 > + =
 
 
∑  

( ) ( ),i if x xα< , max maxTBU QB α> , (21) 

max max iα α= , 1,i k= ,  

then the closed-loop system (18) – (20) is asymptotically stable. Function of Lyapunov of system 

(18) – (20) is 

( )
1

1

2

k

T
i i

i

V ψ ψ

=

= ∑ , (22) 
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The proof is same of Theorem 1. 

Transformation (19) allows to present system (18) like the single block system. A system of 

arbitrary form for k=2 can be presented as system (18) by corresponding designation of state 

variables. 

Limitation of State Variables 

Let us consider limitations of state variables of the block object (2), (18). Assume that the 

limitations are 
maxi

j jx x≤ , 1, 1i k= − , 1,j l= , (23) 

For the block object (2), (18), (23) Theorem 4 is true. 

Theorem 4. If for system (2), (18), (23) functions ( )1 1
,...,

i i
f x x

+  are limited by inequalities (24) 

( ),i i if xα< , 1

max

i i i
f x b

+< , max

k k
f U b< ,  (24) 

then robust control is 

( )max
tanh

k k k
u U Q B ψ= − , (25) 

1 1xψ = , (26) 

( )max 1
tanh

i i i i i i
x x Q Bψ ψ −= + , 2,i k= , (27) 

Herein vectors are calculated from inequalities (28), (29) 
1 1 1 1TB B Q α> , (28) 

1 1 1iT i i i i T i iD D Q B B Qα − − −> + , 2,i k= , (29) 

Control (25) ensures asymptotical stability of system (2), (18), (23), (25). Function of Lyapunov 

is 

0.5 kT kV ψ ψ= , (30) 

The proof is same of Theorem 1.  

Inequalities (28), (29) are conditions of asymptotical stability of the closed-loop system (2), (18), 

(23) – (27). 

Example 1 

Equations of the controlled object are 

1 2 2 max
, ,x x x u u U= = ≤� � , (31) 

Designed by the developed method robust control for object (31) is 

( )( )( )2 max 1

max 2 2 1
tanh tanhu U q x x q x= − + , (32) 

Control (32) is close to bang-bang control [9, 10]. Therefore it is interesting compare the robust 

control (32) with time-optimal control. The closed time-optimal control for object (31) is [10] 

( )( )2

max 1 2 20.5u U sign x x sign x= − + , (33) 

Herein sign  is “signum” function. 

Modeling results of both the robust system (31), (32) as well as the time-optimal system (31), 

(33) are presented on fig. 2. Parameters of controls are: 
max

2U = , max

2
0.5x = , 1 25, 10q q= = . 
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Fig.2 – Phase trajectories of the robust and optimal systems 
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Tr1 is the time optimal control system path. Tr2 is the robust control system path. From fig. 2 we 
can see that the optimal and robust controls are same in the limited area. To calculate this area it is 
necessary product the controls (32) and (33). Area of positive sign of product is 

max

2 2
x x< , 2

1 2
0.5x x> , (34) 

Example 2 
Consider mathematical model of vehicle [11] 

, u dy Rx Mx F F= = +� � ,  (35) 

Herein x is a speed vector of the aircraft, y is a coordinate vector of the aircraft; Fu is a control 
vector; Fd is a nonlinear functional vector; M is matrix of masses and moments of inertia; R is 
functional matrix of kinematical connections. Model (35) is described detailed for airships in [12, 
13, 14], for underwater vehicles in [7, 15], and for helicopters in [16]. 

The aim of this example is to design the vector Fu such that vehicle (35) is stable in an area Ω of 
the undisturbed motion x

0
, y

0
. 

From transformation (19) we obtain 
1 2,x x x x Hy= = + ,  (36) 

Herein H is a nonsingular matrix. 
Let the function of Lyapunov be given by 

( ) ( )2 20.5
T

V x x= ,  (37) 

Differentiating (37) in time we get 

( ) ( ) ( )( )2 2 2 1 1
T T

u dV x x x M F F HRx−= = + +� � .  (38) 

Therefore robust control is 

( )( )max 1tanh T

u uF F QM x Hy−= − + ,  (39) 

Herein max

uF  is vector of the control bounds. 

It is clear that (38) is a negative definite function if 
1 max 1 1

u dM F M F HRx− −> + ,  (40) 

There are modeling results of system (35), (39) on fig 3. The purpose of the control system is 
movement along the straight line with speed about 5 m/s. 

On fig. 3 Vx1, Vy1, and Vz1 are airship speeds in the closed loop system (35), (39). Function Fd is 
20.5dF c V= − ρ ,  (41) 

Herein c  is uncertain parameter, ρ  is constant, V  is air speed of the airship. The uncertain 

parameter is 

( )( )0 1 sinc c t V= + ω ,  (42) 

Herein 0 ,c ω  are constant parameters. 
On fig. 3 areas of inequality (40) failure are marked by rectangles. 
On fig. 3 Vx2, Vy2, and Vz2 are airship speeds in indirect adaptive control system [17] with 

constant disturbance model: 
0c c V= .  (43) 

We can see from fig. 3 that the robust control system loose the given reference only in the non-
controllable area. The adaptive control system operates with error about 12 %. 

 
Fig.3 – Phase trajectories of the robust and optimal systems 
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Experimantal Results 

Results of research are implemented in the wheeled mobile robot “Skif”, shown in fig. 4. 

 
Fig.4 – Mobile robot “Skif” 

 

Mathematical model of the mobile robot is 

( ) ( )

( ) ( )

( ) ( )

1 11 12

2 21 22

,

,

/ 2 ,

l r

l r

r l

x a a

x a a

r b

= ω ϕ + ω ϕ

= ω ϕ + ω ϕ

ϕ = ω − ω

�

�

�

  (44) 

1 11 1 12 2

2 21 1 22 2

,

,

l l

r r

d b u b u

d b u b u

ω = − ω + +

ω = − ω + +

�

�
  (45) 

Herein x1, x2 are external coordinates of the robot, φ is angle of orientation of the robot; ,l rω ω  

are the wheel rotation speeds, r is the wheel radius, a is a kinematic parameter, di, bij are constants; 

u1, u2 are controls. 

Functions ( )ijα ϕ  are: 

( )

( )

( )

( )

11

12

21

22

0.5 cos sin ,

0.5 cos sin ,

0.5 sin cos ,

0.5 sin cos .

r a

r a

r a

r a

α = ϕ + ϕ

α = ϕ − ϕ

α = ϕ − ϕ

α = ϕ + ϕ

  (46) 

Let bounds be given by 

max max 1 max 2 max, , ,l r u u u uω ≤ ω ω ≤ ω ≤ ≤   (47) 

Equations (44) describe a kinematics of the vehicle. Equations (45) describe a dynamics of the 

vehicle. 

The initial state x1(0), x2(0) of the vehicle belongs to some area Ω. Let the purpose state of the 

vehicle is given by x1=0, x2=0. The orientation of platform is arbitrary. 

From section IV of this article we get 

( )( )
( )( )

2

1 max 1 11 2 21

2

2 max 1 12 2 22

tanh ,

tanh ,

u u q b b

u u q b b

= −ϕ − ϕ

= −ϕ − ϕ
  (48) 

( )( )
( )( )

1

1 max 1 11 2 21

1

2 max 1 12 2 22

tanh ,

tanh .

l

r

q x x

q x x

ϕ = ω − ω − α − α

ϕ = ω − ω − α − α
  (49) 

Let the Lyapunov function is given by: 

( )2 2

1 20.5V = ϕ + ϕ   (50) 

Differentiating the Lyapunov function (50) we obtain: 

( )

( ) ]

( )

( ) ]

2

11 max 1 11 2 21

2

12 max 1 12 2 22 1 1

2

21 max 1 11 2 21

2

22 max 1 12 2 22 2 2

tanh

tanh

tanh

tanh

l

r

V b u q b b

b u q b b d

b u q b b

b u q b b d

= ϕ + ϕ +

+ ϕ + ϕ + ω ϕ +

+ ϕ + ϕ +

+ ϕ + ϕ + ω ϕ

�

  (51) 
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Function (51) is a negative definite function if 

11 12 max 1 21 22 max 2, .l rb b u d b b u d+ > ω + > ω   (52) 

11 12 max 21 22 max0, 0.α + α ω > α + α ω >   (53) 

There are modeling results of system (44) – (49) in fig. 5, 6, and 7. Parameters of fig. 5, 6, and 7 

modeling results are: umax=10, max 10ω = , r=0.2, a=1, [ ]0.05 0.15J ∈ , [ ]0.5 3id ∈ , 11 22 1b b= = , 

12 21 0b b= = , 1 2 10q q= = . 
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a) b)  c) 

Fig.5 – a) Path of mobile robot; b) Wheel’s speeds of the mobile robot; c) Fig. 7. The control 

action of the mobile robot 
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